Differential Geometry 2024, M.Math 2nd Year

Marks -100

8th November, 2024

1. Verify that the following statements are true or false (without justification) (2+2+2+2+2=10 points). (i)There exists a 2-form α on \mathbb{R}^4 such that $\alpha \wedge \alpha \neq 0$.

(ii) There exists a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$ and a regular value c of f such that Mobius Strip M can be expressed as $M = f^{-1}(c)$.

(iii) \mathbb{R}^2 and $\mathbb{S}^1 \times \mathbb{R}$ have same Gauss curvature.

(iv) There exists a compact minimal surface without boundary.

(v)The Euler characteristic of a tetrahedron in \mathbb{R}^3 is 2.

- 2. (10 points) Let V be a finite dimensional vector space and $f, g : V \to \mathbb{R}$ be two non-zero linear functionals such that $\ker(f) = \ker(g)$. Show that there exists a non-zero constant c such that g = cf.
- 3. (10 points) Compute $f^*\omega$ where $f: \mathbb{R}^3 \to \mathbb{R}^2$ is given by

$$f(x, y, z) = (xy - xz, xyz)$$

and $w = xdy \wedge dz + ydz \wedge dx + zdz \wedge dx$.

4. (10 points) Let $p \in \mathbb{S}^2$ and $v \in T_p \mathbb{S}^2 \subset \mathbb{R}^3$ be a unit vector. Then the curve $\gamma : [0, 2\pi] \to \mathbb{S}^2$ defined by

$$\gamma(t) = (p\cos t + v\sin t)$$

is a geodesic in \mathbb{S}^2 .

- 5. (10 points) Let $S \subset \mathbb{R}^3$ be a regular surface without boundary and $p, q \in S$. Let α be a smooth parametrized curve from p to q. Then the parallel transport $P_{\alpha} : T_p S \to T_q S$ along α is an isometry; namely, P_{α} preserves the inner product.
- 6. (10+10+5=25 points) Let $S \subset \mathbb{R}^3$ be a compact non-empty regular surface without boundary and K be the Gauss curvature of S.
 - (a) Show that the Gauss map $S \to \mathbb{S}^2$ is onto.
 - (b) Show that if the Gauss map is injective, then $K \ge 0$.
 - (c) Is the Gauss map restricted to $S_+ := \{x \in S \mid K(x) \ge 0\}$ is onto? Justify your answer.
- 7. (10+5=15 points) Give an example of a 2-form ω on \mathbb{R}^3 such that if \mathbb{S}^2 is the unit sphere, the integral $\int_{\mathbb{S}^2} \omega \neq 0$. Prove that ω cannot be exact on \mathbb{S}^2 .
- 8. (10 points) Let M be a closed oriented manifold of dimension 4k + 2 and $\omega_1, \omega_2, \eta_1, \eta_2$ be closed 2k + 1 forms on M such that

$$\omega_1 - \omega_2 = d\omega, \ \eta_1 - \eta_2 = d\eta,$$

for some 2k forms ω and η . Prove that

$$\int_M \omega_1 \wedge \eta_1 = \int_M \omega_2 \wedge \eta_2.$$